If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+x-16=0
a = 5; b = 1; c = -16;
Δ = b2-4ac
Δ = 12-4·5·(-16)
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{321}}{2*5}=\frac{-1-\sqrt{321}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{321}}{2*5}=\frac{-1+\sqrt{321}}{10} $
| 23 =5d−21 | | 2/3 =5d−2/1 | | ∠A=5x+34 | | 5x=x+96 | | 6x-27=36 | | 4(4x-5)=2(8x+1) | | 4(4x-5)=2(8x+1 | | 5x-2x^=0 | | r=105r−5 | | 2x/7-3=x-13 | | X2+3x-4=-6 | | 1/3x=3/12 | | 2(3x+1)=-5(5x-3) | | x+5+50=50 | | 17x-8=10x-29 | | 3x-27=3x-27 | | 4(x+3)+1=-3 | | 3x-27=10 | | 50=y/4 | | 3x-27+10+10+30=18 | | 2(x-3)=3(x+5)-6 | | 3x-27+10=10 | | 8x=13/2 | | (y−74)÷5=3 | | 49=7+6p | | K=14+2(11-k) | | (h−54)/3=9 | | 6x+4=8/2 | | (h−54)÷3=9 | | y=3×-15 | | x/0.2=3+2.1 | | 1+4p=10 |